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Abstract—Most existing radar algorithms are developed under
the assumption that the environment (clutter) is stationary.
However, in practice, the characteristics of the clutter can vary
enormously depending on the radar-operational scenarios. If
unaccounted for, these nonstationary variabilities may drasti-
cally hinder the radar performance. Therefore, to overcome such
shortcomings, we develop a data-driven method for target detec-
tion in nonstationary environments. In this method, the radar
dynamically detects changes in the environment and adapts to
these changes by learning the new statistical characteristics of
the environment and by intelligibly updating its statistical detec-
tion algorithm. Specifically, we employ drift detection algorithms
to detect changes in the environment; incremental learning, par-
ticularly learning under concept drift algorithms, to learn the
new statistical characteristics of the environment from the new
radar data that become available in batches over a period of
time. The newly learned environment characteristics are then inte-
grated in the detection algorithm. We use Monte Carlo simulations
to demonstrate that the developed method provides a significant
improvement in the detection performance compared with detec-
tion techniques that are not aware of the environmental changes.

Index Terms—Active drift learning, cognitive radar, data-
driven adaptive radar, incremental learning, nonstationary
environment.

I. INTRODUCTION

I NCREASING the accuracy of target detection and track-
ing is of great importance in military and coastal security

operations, navigation, and maritime rescue operations. To
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guarantee the accuracy of both detection and estimation, clutter,
interference, and noise must be suppressed to make the tar-
get signal distinguished. However, in practical scenarios, the
characteristics of clutter backscattering can vary enormously
depending on the region where the radar focuses its beam at a
particular instant (or, maybe during a few successive instants).
Even when the radar operation is restricted to a particular
region, the change in weather conditions (temperature, wind
speed, humidity, etc.) can drastically change the clutter statis-
tics in maritime environments. Additionally, a highly dynamic
target, e.g., moving through an urban canyon, can show high
nonstationarity due to frequent appearance and disappearance
in the radar coverage area.

A considerable amount of research work has been done to
design radar systems that improve the performance of target
detection and tracking in the presence of these various forms
of nonstationarity. Particularly, in recent years, the desire for a
radar system that can effectively sense its scenario, learn from
its experience, and adapt to the changes in environment has
been emphasized, and a conceptual framework for a cognitive
fully adaptive radar that includes these three components has
been laid out [1]–[3]. To implement this cognitive radar frame-
work, several intelligent methods have been developed (mostly
considering each component separately).

1) Practical methods to identify the distribution of the radar
measurements using a prelearned dictionary of possible
probability density functions (pdfs) representing the clut-
ter characteristics [4]–[6], and to develop auto-regressive
modeling of clutter distribution with a knowledge-aided
Bayesian covariance estimation [7]–[10] for target detec-
tion.

2) Adaptive weighted sum of clutter covariance estimates
with exponentially decaying weights and predetermined
delay constants [11], [12], waveform design that depends
on the clutter characteristics [13], and nonhomogeneity
detector in training data [14] for spatio-temporal adaptive
processing applications.

3) Target-state-dependent radar measurement models inte-
grated in a fully adaptive cognitive radar framework [1],
[15], [16] for target tracking.

These existing methods address important practical issues
in the realization of the cognitive radar framework. However,
these methods suffer from three shortcomings: 1) They have
been developed under the assumption of parametric distribution
for the clutter and noise processes; 2) A dictionary of possi-
ble pdfs is assumed to exist; and 3) The problem of estimating
the time instant when the statistical characteristics of the data
changes is not answered. To overcome these shortcomings, in
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this letter, we develop machine-learning-based target detection
algorithms that enable us to take a holistic approach to fully
realize the cognitive radar framework. Our proposed radar sys-
tem provides a unifying approach by autonomously learning
and estimating the change-point in the statistical characteristics
of the scenario, and by accordingly adapting to the environment
with the incorporation of newly learned environment statistics
into the target detection algorithm.

Specifically, we utilize incremental learning and drift detec-
tion algorithms for building a detection method that incremen-
tally learns the environment and updates the system parameters
on the fly. This becomes possible as the radar always pro-
vides labels or labeled data (e.g., labels for target presence or
absence) along with different confidence measures from the
received measurements in a sequential manner. Thus, we also
bypass the requirement of obtaining training data for infinitely
many representations of the nonstationary characteristics to
devise an efficient supervised learning algorithm.

While incrementally learning in a nonstationary environ-
ment, one major problem that the proposed intelligent radar
system encounters is concept drift. Concept drift refers to
changes in the distributions of the measured data (correspond-
ingly the environment model) that are used for incremental
learning [17]–[30]. Therefore, in order to learn in the presence
of a concept drift, the radar system needs to employ incremen-
tal learning together with the active drift detection algorithms
for detecting the nonstationarities in the environment. This can
be implemented in two different ways: 1) active and 2) passive
concept drift learning [22], [23].

We consider an active drift learning setup in this letter.
This implies that the radar system first estimates the time
when a change occurs in the environment distribution from
which the measurement data are drawn, and then modifies its
detection algorithm with the new distribution to continue the
sequential learning. Consequently, this data-driven approach
complements the existing techniques as it is not limited to
any specific clutter/environment type and to any parametric
modeling approach.
Mathematical Notations: In the rest of the letter, we assume
that Cc for c ∈ {0, 1} denote the two classes that represent
the absence and presence of the target, respectively. In other
words, C0 and C1 are equivalent to H0 and H1 of radar tar-
get detection hypotheses, respectively. For every c ∈ {0, 1}, Hc

0

and Hc
1 are the hypotheses corresponding to “no-change” and

“change” in the distribution of data corresponding to class Cc.
We denote the calibration data set collected for both classes as
Y0 = {yt, rt} for t = 1, . . . , T0, with yt as the radar measure-
ment, T0 as the number of measurements in the calibration data,
and rt = 0 if yt ∈ C0 and rt = 1 if yt ∈ C1.

II. PROPOSED DETECTION METHOD

In order to analyze the nonstationarity in the environment
returns, we assume that some initial distribution models have
already been estimated from the precollected data. In this
letter, we refer to the precollected data as calibration data.
We mention here that the calibration data are more general
than the well-known radar secondary data; this is because

the calibration data include measurements of both the target
and nontarget components, whereas the conventional secondary
data represent only the nontarget (clutter) data.

After modeling the initial distributions, our next task is to
develop learning algorithms that can effectively model the non-
stationarities caused by the changes in the environment. An
important step in that endeavor is to detect whether or not there
is any change in the statistical properties of the environmental
measurements. Assuming the change point to be deterministic
but unknown, we calculate it by minimizing the supremum of
the average detection delay conditioned on the observed radar
measurements with a constraint on the mean time between false
alarms.

Mathematically, this means that using the batches of radar
data observed up until the measurement time n, Yc

0 , . . . ,Yc
n,

c ∈ {0, 1}, we estimate the time when the change in the sta-
tistical characteristics of the data from class c is occurring
by employing the following constrained optimization problem
[31], [32]

argminτ supn≥1 ess sup En

[
(τ − n)+|Yc

0 , . . . ,Yc
n−1

]
such that E∞[τ ] ≥ α (1)

where τ is the stopping time such that when it takes a
value k (it means that there is a change point at or prior
to time k); sup stands for supremum; ess sup is the essen-
tial supremum of a set of random variables that we define
below in more detail; x+ = max(0, x) for any variable x;
En[·] is the expectation taken with respect to a distribution
pcn (such that under pcn, {Yc

0 , . . . ,Yc
n−1} are independent and

identically distributed (i.i.d.) with a fixed marginal distribu-
tion for c ∈ {0, 1}); E∞[τ ] represents the mean time between
false alarms assuming that change never happens in the data
stream, and α is a predefined threshold. Essential supremum
of a set of random variables X is a random variable Z
with the following properties: 1) P (Z ≥ X) = 1 ∀X ∈ X ;
and 2) {P (Y ≥ X) = 1 ∀X ∈ X} → P (Y ≥ Z) = 1 ∀X ∈
X , where P (·) represents the probability [31]. In light of the
definitions above, the solution to the constraint optimization
problem in (1) minimizes the supremum of the average delay
conditioned on the worst case realization of {Yc

0 , . . . ,Yc
n−1}

over all pn, n ≥ 1 [31], [32].
Now, depending on the characterization of pcn, the solution of

the problem in (1) can be further sub-categorized into two dif-
ferent cases: 1) known parametric distribution of pcn, i.e., when
we have prior knowledge on the calibration data such that the
radar scattering from the environment follows a specific para-
metric distribution family; and 2) unknown distribution of pcn,
i.e., when we have no prior knowledge about the family of the
distribution of the radar data. We consider the first case in this
letter.

We obtain an optimal solution of (1) under the assumption
that {Yc

0 , . . . ,Yc
n} for c ∈ {0, 1} are i.i.d. samples that are

drawn from a parametric distribution with pdf pΘ(y) [33]–
[37]. When there is a change in the statistical characteristics
of the new batch of radar data, we assume that the pdf model
of the family does not change, but the change is modeled as
a transition from one parameter θc0 (the null hypothesis for
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class Cc, Hc
0) to another θc1 (alternative hypothesis for class

Cc, Hc
1). Recall that for a specific class Cc, c ∈ {0, 1} repre-

sents the absence or presence of target in the area covered by
the radar, and Hc

0 and Hc
1 are two hypotheses corresponding to

“no-change” and “change” in the distribution of the radar data
obtained for class Cc.

The optimum stopping time τ for the problem in (1) is found
using CUmulative SUM (CUSUM) method which is calculated
as follows [33]–[37]:

τ = inf

{
n ≥ 1 :

(
g(Yc

0 , . . . ,Yc
n) = Rn − min

1≤k≤n
Rk

)
≥ b

}
(2)

where n is the batch index as defined before, b is a prede-

fined threshold, and Rk =
∑k

t=1 ln
pθc

1
(Yc

t )

pθc
0
(Yc

t )
[31]–[33]. Before

a change point, the accumulated log-likelihood sum Rn moves
toward −∞; whereas after the change point, if the change
happened in the favor of θc1, Rn starts to move toward ∞.
Therefore, the condition (Rn −min1≤k≤n Rk) ≥ b optimally
estimates if and when the change in the behavior of Rn occurs
within 1 ≤ k ≤ n.

Calculating τ from (2) requires the knowledge of the param-
eters θc0, θc1, and threshold value b. We use the calibration data
Yc
0 for every class c ∈ {0, 1}, and the knowledge of the para-

metric distribution underlying the data to find an estimate of θc0.
We then compute the confidence intervals for the estimation of
the parameters θc0 and assign the confidence interval extremas
to θc1. Once we have the parameter sets θc0 and θc1, we compute
(2) using the calibration data and assign b = max1≤t≤T0

g(Yc
0)

recalling that Yc
0 = yt|rt = c for t = 1, . . . , T0 [33]. Following

the approach described above, when there is a change in the
statistical characteristics of the environment from one known
parametric distribution to another known parametric distribu-
tion, we illustrate the performance of CUSUM on change point
detection and the effect of adapting the detection algorithm to
the new environment model on a target detection problem in
Section III.

Note that when there is no prior knowledge about the family
of the distribution of the radar data in Yc

0 for c ∈ {0, 1}, we can
employ an extended version of the CUSUM method [33]. In this
approach, we divide the set Yc

0 = {yt|rt = c} for t = 1, . . . , T0

into subsets with cardinality K and compute

zk =
1

K

kK∑
ν=(k−1)K+1

yν , k = 1, . . . , T0/K (3)

to form Zc
0 = {zk|rk = c} for k = 1, . . . , T0/K. For a suf-

ficiently large K, zk can be approximated as a Gaussian
distributed random variable with an unknown parameter set θc0,
denoted as pθc

0
(·). If there is a change in the statistical properties

of the radar data, the change is from a Gaussian random variable
with parameter set θc0 to another Gaussian random variable with
parameter set θc1, denoted as pθc

1
(·). This type of change fits in

the framework of CUSUM. Therefore, for extended CUSUM,
we can utilize a method similar to (2) to estimate the change
point

τ = inf

{
n ≥ 1 :

(
g(Zc

0 , . . . ,Zc
n) = Rn − min

1≤k≤n
Rk

)
≥ b

}
(4)

where Rk =
∑k

t=1 ln
pθc

1
(Zc

t )

pθc
0
(Zc

t )
and Zc

t is calculated from Yc
t

using the method in (3). Similar to the CUSUM method
described earlier, to estimate the change point using (4), we
estimate θc0 using the training data Zc

0 and estimate θc1 using
the confidence interval extremas of θ̂c0 estimator. We also com-
pute b = max1≤k≤T0/K g(Zc

0) recalling that Zc
0 = zk|rk = c

for k = 1, . . . , T0/K [33].

III. NUMERICAL EXAMPLES

In this section, we present simulation results of target detec-
tion in the presence of nonstationary interference. We show
improved performance by using a detector that applies the
CUSUM method to detect and estimate the change in the clutter
distribution.

To setup the problem, we assume that the radar is collecting
measurements from multiple range cells (indexed by j) over a
sequence of coherent processing intervals (indexed by k). In
each interval, it receives and processes N temporal samples.
Without loss of generality, the target is assumed to be present in
the j = 1 range cell, and it remains in that cell during the entire
processing of k = 1, 2, . . . ,K coherent intervals. Furthermore,
the target response is considered to be known and constant,
which we denote as a. Then, the detection problem of the jth
range cell at the k coherent interval can be expressed as{

H0 : y
(j)
k = n

(j)
k

H1 : y
(j)
k = a1+ n

(j)
k

(5)

for k = 1, 2, . . . ,K, and j = 0, 1, 2, . . ., where each vector is
of dimension N × 1. We model the nonstationarity in the clut-
ter returns n

(j)
k by representing a change of distribution from

Gaussian to compound-Gaussian at the processing interval k =

k0. Therefore, for k = 1, 2, . . . , k0, we have n(j)
k ∼ N (0, σ2I)

with a known σ2. However, for k = k0 + 1, . . . ,K, the clut-
ter distribution modifies to n

(j)
k ∼ N (0, (1/

√
vk)σ

2I), where
(1/vk) follows a gamma distribution with unit mean and a
known shape parameter ν > 0.

To deal with such a nonstationary clutter characteristics, our
proposed machine learning based radar first checks for any
change in the clutter distribution by employing the CUSUM
test, and then modifies the detection algorithm in accordance
with the changed (if any) distribution.

We detect the change point of the clutter distribution by
testing for the confidence intervals for the sample mean and
sample variance. Specifically, we assume the availability of
a batch of Nt training measurements {Yc

0 , . . . ,Yc
Nt

}, where
c ∈ {0, 1} denote the two classes that represent the absence and
presence of the target, respectively; and Yc

n = {yc
n, r

c
n} with

r0n = 0 when y0
n belongs to the target-absent class N (0, σ2I),

and r1n = 1 when y1
n belongs to the target-present class

N (a1, σ2I). Then, for each class c ∈ {0, 1}, we compute the
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Fig. 1. Performance of the change point detection test in terms of the cumula-
tive distribution function of the estimation delay.

sample mean μ̂c and sample variance ŝ2
c

as

μ̂c =
1

NtN

Nt∑
n=1

1Tyc
n

ŝ2
c

=
1

NtN − 1

Nt∑
n=1

(yc
n − μ̂c1)T (yc

n − μ̂c1). (6)

Subsequently, noting that the sample mean and variance
follow Gaussian distribution and chi-square distribution with
NtN − 1 degrees of freedom, respectively, the lower and upper
limits on the 95% confidence intervals of mean and variance
under H1 are calculated as

all = μ̂1 − 1.96
σ√
NtN

, aul = μ̂1 + 1.96
σ√
NtN

(7)

σ2
ll =

(NtN − 1)s2
1

χ2
NtN

(α/2)
, σ2

ul =
(NtN − 1)s2

1

χ2
NtN

(1− α/2)
(8)

where α = 0.05. Next, we evaluate Rk =
∑k

n=1 ln
pθ1

1
(y1

n)

pθ1
0
(y1

n)
and gn = Rn −min1≤k≤n Rk, and use the CUSUM method of
(2) to determine the change in the distribution with parameters
from θ10 = [a, σ2] to either θ11 = [all, σ

2
ll], or θ11 = [all, σ

2
ul], or

θ11 = [aul, σ
2
ll], or θ11 = [aul, σ

2
ul]. The change in the distribution

is declared when gn ≥ b, where b is chosen from the training
data as b = max1≤n≤Nt

gn. Similar training is also done with
the data obtained for H0. A change is declared in the statisti-
cal conditions of environment when change is detected in the
distributions under H0 and/or H1.

The performance characteristic of the change point detection
and estimation is shown in Fig. 1 in terms of the cumulative
distribution function of the estimation delay. It clearly demon-
strates that for more than 96.5% of the time the change in the
clutter distribution is detected by the proposed radar within
just one processing interval. In other words, this implies that
our method can detect and estimate a change in the clutter
characteristics almost as soon as it happens.

Once such a change in the clutter distribution is detected
at k = k0, the proposed radar accordingly modifies the
log-likelihood ratio computation from ln [p(y

(j)
k |μ, σ2;H1)/

p(y
(j)
k |σ2;H0)], for k = 1, 2, . . . , k0, to ln [p(y

(j)
k |μ, ν, σ2;

Fig. 2. Improved detection performance using the proposed radar.

H1)/p(y
(j)
k |ν, σ2;H0)] for k = k0 + 1, . . . ,K. This cor-

responds to the modification of the test statistic from

{1Ty
(j)
k , k = 1, 2, . . . , k0} to {ln [y(j)

k

T
y
(j)
k +σ2ν]− ln [(y

(j)
k

− a1)T (y
(j)
k − a1) + σ2ν], k = k0 + 1, . . . ,K} for every

range cell j.
The detection performance of the proposed algorithm is

shown in Fig. 2 in terms of the receiver operating char-
acteristics (ROCs) at two different SNR values. This plot
additionally includes the ROCs of a conventional radar
detector that does not understand the change in the clut-
ter distribution and applies the standard log-likelihood ratio
ln [p(y

(j)
k |μ, σ2;H1)/p(y

(j)
k |σ2;H0)] for all the processing

intervals k = 1, 2, . . . ,K. Comparing the blue with red curves,
particularly in lower probability of false alarm regions where
a radar system typically operates, a substantial improvement
in the detection performance of the proposed radar due to the
incorporation of the modified clutter characteristics is clearly
evident from these ROC plots.

IV. CONCLUSION

In this letter, we developed a machine-learning-based detec-
tion algorithm to detect a target in the presence of nonstationary
environment (clutter). It is not possible to devise a supervised
learning algorithm to model infinitely many representations of
the nonstationary characteristics. Therefore, we employed the
incremental learning and drift detection algorithms for building
a detection algorithm that incrementally learns the environment
and updates the system parameters on the fly. In addition to
incremental learning, we used an active drift learning tech-
nique to detect and estimate any change-point (if present) in the
environment distribution. Our numerical examples showed that
the proposed method is able to quickly detect a change in the
underlying clutter distribution, and as a consequence produced
a substantially improved detection performance compared to a
conventional algorithm that was not aware of any environmen-
tal change. In our future work, we will extend our model to
incorporate a Bayesian formulation of the change point param-
eter. We will also explore the active drift learning under noisy
labels and passive drift leaning methodologies. Additionally,
we will validate the performance of our proposed technique
with real data.
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